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Introduction:   

The advent of large-scale genome sequencing has revolutionized the field of genetics and 

biology.  Sequencing projects require sophisticated computational analysis to manage vast 

collections of data.  Scientists first sequenced a genome in 1977, that of a small bacteriophage 

consisting of 11 genes over 5.4kb of DNA.  In the bacteriophage, coding genes comprise 95% of the 

genome.
1
  Since then, numerous prokaryotic and eukaryotic genomes have been sequenced, 

including the mouse (M. musculus) genome, the human (H .sapiens) genome and the model plant 

Arabidopsis thaliana genome.   Gene prediction in eukaryotic genomes can be especially difficult 

given the large genome size, the low proportion of coding regions, and the frequent splice events 

due to the presence of introns (non-coding segments between the exons that code for a gene).  For 

example, the human genome contains approximately 25,000 genes over 30 million base pairs.  

Given that the average protein encoded by these genes is 350 amino acids, this means that only 

about 1% of the genome actually codes for proteins and these regions must be separated from the 

remaining 99% of the genome.
1
  The actual coding regions are frequently interrupted by introns that 

are removed from the mRNA transcripts through splicing.   

 

Gene structure includes a promoter region to allow for temporal and spatial (i.e. cell type) 

expression by trans-regulatory elements.  In addition to the introns that are removed from the pre-



mRNA transcript via splicing, the actual mRNA transcript includes 5’ and 3’ regulatory regions that 

are not translated (these UTRs can be important for miRNA regulation).  Complete gene structure is 

therefore very complicated.  The primary focus of most gene prediction programs is to identify all 

genes in a given sequence and to exactly identify the boundaries of regions corresponding to the 

coding segments of exons.
1
    

Traditionally, forward genetic screens involve mapping mutations to specific genetic loci.  

Now, proper annotation of completely sequenced genomes facilitates accelerated biological 

discovery.  Once genes are identified, further analysis of the coding sequence can be used to 

identify protein domains to help illuminate function and determine candidates for further study.  

Homologs in different organisms can be identified via sequence alignment and then further studies 

can be conducted to determine if a protein in one organism has analogous function to its most 

closely related protein in another organism.  Genome analysis has revealed that the genetic 

evolutionarily history of some organisms, especially plants, has been characterized by large 

duplication events.  These duplications can complicate functional characterization, as single mutants 

often display no phenotype due to a closely related gene (or genes) in the organism that exhibits 

redundant or compensatory function.
2
  By identifying all genes in the genome, one can analyze 

these sequences to guide the generation of multiple mutants of closely related genes that may 

manifest a mutant phenotype (thereby elucidating gene function).   Correct annotation of the 

genome is therefore critical for a wide range of biological applications and for the accelerated 

functional characterization of genes.  

Several methods can be employed to identify genes within a genome.  These approaches can 

be broadly grouped into sequence alignment and ab initio prediction.  In sequence alignment, 

genetic sequences are compared to known genes in other organisms (via BLAST) or to EST/cDNA 

data.  The use of BLAST searches to explore a new genome is limited because many genes will not 

have a recognizable homolog
3
  With ab initio prediction, intrinsic signals within the sequence (such 

as start and stop codons and splice sites) are combined with probabilistic models to predict whether 

or not a given sequence has gene structure.  This critique will focus on gene prediction through use 

of ab initio programs and also consider alternative approaches such as EST alignment.  

Methods in commonly used Gene Prediction Programs: 

One major class of gene prediction programs are ab initio programs that use complex 

algorithims to identify gene signals within sequences.  These programs generally have several 



assumptions, including no overlapping genes, no nested genes (such as a gene located in the intron 

of another gene), no partial genes (due to missing sequence in genome assembly), no frameshifts, 

no noncanonical signals (such as splice sites other than GT and AG), and no alternative splicing. 
1
     

In order to predict gene structure, the programs search a sequence for signal sensors.  These sensors 

often include start codons (ATG), stop codons (TAG, TGA, TAA), splice donor sites (typically 

GT), splice acceptor sites (typically AG), and promoter sites (TATA box and CAT box upstream of 

coding sequence).
3
 Notably, most of these nucleotide sequences are short and nonspecific. Simply 

identifying these sites in a long DNA sequence therefore is not very useful.  Identification of these 

sequences is combined with coding statistics, in which probability is used to determine the 

likelihood of a gene being present in a sequence and its exon boundaries.  Hidden Markov Models 

are frequently used in ab initio programs because they allow for the modeling of various hidden 

states and the probability of moving from one state to another.   

Ab initio programs also require a training set so that the program parameters (such as 

HMMs and weight matrices) can be optimized such that the program is able to predict genes for the 

genome composition of a particular organism.  Notably, some organisms have significant codon 

bias that can be extremely predictive of exons.
1
 Different organisms have different nucleotide 

composition in the signal sensor regions, exon, and introns.
1
  Weight matrices can model these 

differences; for instance, in a particular organism the AG splice sites may be flanked by a T at some 

high frequency, and this probability could be trained into the program.  Exons and introns can also 

have a greater probability to be of a certain length in specific organisms.
4
  The G+C content of 

organisms can vary
5
 and in many organisms, coding portions of exons have elevated G+C levels.

1
 

For example, Arabidopsis has an overall G+C content of 36%, with coding G+C 44% and 

noncoding 32%.
6
  (Please also see Supplemental Figure 7).   One must also consider overall GC 

content more generally in order to account for codon bias.  Within open reading frames, GC rich 

genomes tend to have a G or C at the third position whereas AT rich genomes tend to have an A or 

a T.
7
  Thus, the performance of a given ab initio program depends not only on the algorithms used 

in the program but also on adequate training which requires a representative test set of genes.  !

GENSCAN:  

The GENSCAN (Burge and Karlin 1997) program at MIT provides versions of the program 

trained for Arabidopsis, Maize, and Vertebrates. This commonly used program explicitly scores for 

transcription and translation signals
8
 and uses an explicit-duration HMM. 

3
  For signal sensors, 



GENSCAN identifies donors and acceptor splice sites, start codons, stop codons, promoters, and 

polyadenylation signals and these signal sensors are not specific to G+C density.
1
   

To analyze sequences for donor sites, GENSCAN uses a maximal dependence 

decomposition (MDD) method, which can be thought of as a tree in which internal nodes 

correspond to specific decisions and leaf nodes correspond to solutions.   One can move from one 

node to another based on the defined predicates of each node, which are associated with 

probabilities.  In GENSCAN, the leaves of the MDD tree are weight matrices (WMMS) that include 

the GT splice site three bp from the beginning of the 9bp sequence.  Acceptor sites are not modeled 

with an MDD but instead are modeled using a weight array matrix (WAM) and the AG site is offset 

at 20bp in the 23bp WAM.  Start codons, stop codons, and polyadenylation signals (AATAAA 

consensus) are modeled using simple weight matrices of lengths 12bp, 6bp, and 6bp respectively.  

The other signal sensor used by GENSCAN, the promoter, is modeled using a 15bp WMM for the 

TATA-box which must be 14 to 20 bp from 8bp WMM for the CAP site.  Since approximately 30% 

of eukaryotic genes do not have a TATA-box, a split model is used in which the presence of a 

TATA box is assigned a probability score of 0.7 and no TATA box is assigned a score of 0.3.
9
  

Lastly, exons, introns, UTRs, and intergenic regions in GENSCAN are all modeled using 5
th

-order 

Markov chains (three-periodic for exons).   GENSCAN trains two different 5
th

-order Markov 

chains, one for low G+C density (0-43%) and one for high G+C density (43-100%). 
1
  Additionally, 

GENSCAN is able to predict the presence of partial genes.
9
 

FGENES and FGENESH: There are various FGENE (Find Genes) programs, including the pattern 

based FGENES and the HMM based FGENESH.   These programs are found at the SoftBerry 

website.  The FGENESH provided at the SoftBerry website provides numerous version of the 

program, which have been trained on a wide variety of organisms.  These include chicken, frog, 

human, mouse, drosophila, honey bee, phytophthora, ustilago, algae, dicot plants, monocot plants, 

and many more.  

The basic premise of the initial FGENES is a pattern-based method that uses dynamic 

programming and discriminant classifiers in order to produce exon candidates.  Candidate exons are 

first identified by searching for all open reading frames bordered by known signals (e.g. ATG…GT, 

AG-GT, AG… STOP).  These candidate exons are then placed in order given their relative position 

(5’ to 3’) and a maximum score is calculated for each possible path of compatible exons.   Lastly, 

any identified promoters or poly(A) tails are scored and placed at the appropriate terminal exon.
10

    



The FGENESH program version uses Hidden Markov models similar to GENSCAN.  The 

FGENESH is considered different from other programs because it does not place as much weight on 

content terms (such as codon usage) as it does on signal terms.
4
 It also uses a Bayes Theorem to 

calculate the probability of exons.  Similar to GENSCAN, FGENESH uses separate potentials for 

regions with low GC content (less than 45%) and those with high GC content (45% and greater).
10

  

There is also a version of FGENESH (FGENESH_GC) on the website which allows for exon 

prediction using the non-canonical GC splice donor.  

An additional version of FGENESH is FGENESH+ which combines the FGENESH HMM 

based prediction program with information from protein homologues.  It does this through an 

additional calculation that implements a Smith-Waterman for alignment of predicted exons with the 

protein homolog.   

GeneMark.hmm:  GeneMark.hmm is another HMM based program that was originally made 

for gene prediction in bacteria.  This program has since been modified for eukaryotic gene 

prediction and also has a self-training version of the program requiring a sequence of 10MB. Like 

GENSCAN, GeneMark.hmm uses an explicit-duration HMM, which means that each state of the 

HMM has an associated length distribution.
3
 This HMM is also referred to as a hidden semi-

Markov model. The HSMM provides hidden states for the initial and terminal exons, introns, 

intergenic regions, single exons, splice sites, initiation sites, and termination sites.    These hidden 

sites emit nucleotide sequences of fixed length and are modeled by positional Markov chains.  The 

protein coding state is modeled by a three-period Markov chain and the order of the Markov chain 

(up to 5
th

 order) is determined by the training sequence.
5
   

GeneMark.hmm has also developed a self-training version of the program for eurkaryotic 

genomes.  This is an important algorithm because gene prediction programs need to be trained in 

order to optimize the parameters for a specific organism.  Typically, this training process requires 

the use of a large, already verified training set which can be hard to acquire.  For self-training, the 

program uses an unsupervised iterative estimation of gene parameters through a process known as 

Viterbi training.  The Viterbi training provides a method to estimate the parameters for the Hidden 

Markov Model.  The algorithm uses the genome sequences labeled by the Viterbi algorithm and 

then re-estimates its parameters to compute new sequences until a convergence point is reached.
5
    

GeneSeqer@PlantGDB : A spliced alignment program specific for plants can be found at 

GeneSeqer@PlantGDB.   The program provides specific splice site models for Arabidopsis, Maize, 



Rice, and Medicago.  Geneseqer uses spliced alignment with ESTs and full-length cDNAs.
11

  For 

the gene prediction, the ESTs and cDNAs can be source native or nonnative (i.e. from putative 

homologs in other species).  The EST and cDNA can be either supplied by user input or retrieved 

from a database.    The spliced alignment uses ESTs alongside a genomic sequence and the resulting 

aligned regions are assigned as exons and gaps as introns.  The gaps are generally flanked by the 

stereotypic GT and AG donor and acceptor splice sites.  Prediction is based on both the sequence 

similarity and splice site strength. 
12

   

GeneSeqer allows for gene prediction based on the most current EST and cDNA sequences 

available.  These sequences can help overcome what is known as “annotation lag” which refers to 

the fact that major annotation projects are often outdated in that they do not reflect the most recently 

available EST and cDNAs.  GeneSeqer also allows one to improve gene prediction accuracy by 

including homologous ESTs from non-native origin (other organisms).  Potential for improved gene 

prediction has been demonstrated using two separately annotated loci on Arabidopsis chromosome 

5: At5g62600 and At5g62590.  Researchers used spliced alignment of both native and nonnative 

resources to predict that these two loci actually correspond to a single gene of 27 exons
11

, which 

would have been missed using just ab initio gene prediction programs.   

In 2005, a GeneSeqer with the ability to align sequences with non-canonical splice sites (GC 

donor site) was developed.  Approximately 1-2% of introns are non-canonical in Arabidopsis and 

rice and modeling of GC donor splice sites thus enables detection of these introns, significantly 

improving gene structure prediction.
13

  

 There are also various other ab initio programs and splice alignment programs.  A common 

method to enhance gene prediction power is to combine various programs or to combine various 

methods into a single program.  For example, the FGENESH+ program discussed uses both the 

HMM along with a BLAST to known proteins.  A new program known as HaMStR also combines 

HMMs with a BLAST in order to make use of EST transcripts for ortholog identification.
14

   There 

are also programs such as SLAM and TWINSCAN that use comparative genomics to analyze two 

genomes.  The basic premise behind these programs is that highly conserved regions likely 

correspond to genes. SLAM uses an HMM combined with sequence alignment while in 

TWINSCAN the sequence alignment is performed first.
15

 

 

Evaluation of Gene Prediction Programs  



General Criteria 

To evaluate program performance, the specificity and sensitivity of results are often analyzed at the 

nucleotide, exon, splice acceptor, and splice donor level.  

Sensitivity (or recall) refers to the objects in a class that are correctly identified as a member of that 

class. The general equation is:   

True Positives / (True Positives + False Negatives) where true positives are the positives correctly 

identified by the program and the false negatives are the ones that the program missed.   

In considering exons, for example, the specificity would be the amount of correctly identified exons 

divided by the total actual exons in the sequence (it is thus important to have a reliable test set). 

Specificity (or precision) how many objects identified as a member of a class actually belong to that 

class.  The general equation is: 

True Positives/ (True Positives + False Positives) where the true positives are the positives 

correctly identified by the program and the false positives are incorrectly identified as being part of 

the class.  In considering exons, for example, the specificity would be the amount of correctly 

identified exons divided by the total exons the program identified.
1
   Exon sensitivity (SN) and 

specificity (SP) tends to be much lower than nucleotide SN and SP because both exon boundaries 

must be correctly identified in order for the exon to be considered a true positive.  Similarly, SN and 

SP values for a gene tend to be even lower because every exon must be correctly specified in order 

for the gene to be considered a True Positive.
3
 Generally, SN and SP values are calculated at the 

splice site, nucleotide, and exon level rather than the gene level.    

Results from 3 gene prediction programs on a 20kb sequence from Arabidopsis 

To look at the output generated by various gene prediction programs, I selected a 20kb 

region from the Arabidopsis genome and put it into three different programs.  I used the forward 

strand of chromosome 2 from bases 11207501 to 11230701.  I ran the following programs (versions 

of which have been trained on Arabidopsis):  FGENESH, GENSCAN, and GeneSeqer@PlantGDP.  

I compiled the results (exon boundaries) for the first three genes in the region as shown in 

Supplemental Table 1.  All these programs analyze the forward and reverse strands.  Graphical 

output for all three tables is shown in supplemental figures 1-3.  The location numbers correspond 

to the actual sequence  (see final pages of this paper) inputted into the program and not the actual 

location on the chromosome.  



 One major difference is that the ab initio programs (GENSCAN and FGENESH) predicted 

additional genes than did the spliced alignment.  GENSCAN and FGENESH both predict a single 

exon gene from approximately 19 to 20.5 kb of the input sequence.  There appears to be no 

corresponding EST data for this, as GeneSeqer does not show any EST/cDNA alignment for this 

region (ESTs shown in red in this program).  With this data alone, it is difficult to say for sure if this 

region corresponds to a gene.  It could be a gene that GeneSeqer missed it because it is lowly 

expressed or expressed under only certain conditions of specific tissues, and thus there is no 

corresponding EST or cDNA.  In this case, it would be considered a false negative and would lower 

the GeneSeqer sensitivity score.  On the other hand, it could be a pseudogene that does not actually 

encode a gene in Arabidopsis.  In this case, it would be a false positive and would lower the 

specificity score of GENSCAN and FGENESH.   

 Additionally, the ab initio programs both predict a two exon gene from 21.5 to 23kb of the 

input sequence.  GeneSeqer does not shown a prediction for a protein (proteins are displayed in 

orange) but does show a very small EST alignment that would correspond to one of the two exons, 

without showing any sequence or predicted gene sequences for the other exon region.  Thus, there is 

very little EST and cDNA data for this gene and GeneSeqer cannot make a prediction.  

Alternatively, it could be another pseudogene that encodes a short transcript but is not translated.   

All three programs predicted the first gene in this region, AT2g26330.  This is a 

characterized gene consisting of 27 exons with a known cDNA sequence. The GeneSeqer identified 

all 27 exons, which is expected given that the cDNA for AT2g26330 was used in the spliced 

alignment (can be seen in red).   Notably, GENSCAN identified substantially fewer exons (17 

exons) in this region than did FGENESH (26 exons).  In this region, the exon sensitivity is lowest 

for GENSCAN.  Many of the exons predicted by GENSCAN are also not properly defined in terms 

of their boundaries.  For several genes (including 1-3), GeneSeqer was able to make strong 

alignments because there was a lot of EST and cDNA data corresponding to the region.  I compiled 

a table with a list of the exons and their boundaries for these genes (see supplemental table 1).  

Based on the sequences observed, it appears that overall FGENESH did better than GENSCAN.  

Based on the cDNAs and the output for GeneSeqer, most of the exons in the gene are 72 bp long.  

GENSCAN missed several of these and it also missed some smaller exons (31 and 48 bp) in other 

genes as well.  These results appear consistent with a paper showing that GENSCAN is relatively 

poor (compared to other programs such as FGENES) in its ability to identify smaller exons ranging 



from 0 to 74bp.
3
  The differences were most pronounced in the paper, however, with very small 

exons (24 bp or less).  Notably, in my sequence, GENSCAN missed a couple medium sized exons 

(159 and 133) so a strong trend is not apparent with this small data set.   

GENSCAN did not accurately predict the final stop codon containing exon for the 

AT2g26330 locus.  It ended this exon prematurely (1223-875 rather than 1223-867 on the reverse 

strand).  This improper boundary means that this exon is not classified as a true positive, although 

the correct nucleotides in this sequence can still contribute to the nucleotide sensitivity score.   After 

ending the exon prematurely (likely due to a false positive identification of a splice donor site), it 

then added a final exon for which there is no EST evidence (a false positive for both the exon and 

nucleotides in the sequence).  For the most part, FGENESH exons correspond very well with EST-

based predictions, although occasionally an exon boundary is misspecified.   

The spliced alignment method relies heavily on the available EST and cDNA data.  For the 

results shown above, GeneSeqer was able to identify 27 exons for locus AT2g26330, which 

corresponds to the known number of exons based on cDNA.  It is a given that GeneSeqer should 

predict the AT2g26330 exons with great accuracy because the entire cDNA is used in the spliced 

alignment.  Because of this, I reran the GeneSeqer program using only a subset of the spliced 

alignment data (removing cDNA sequences and leaving ESTs only).  In this second run, which still 

included several dozen ESTs corresponding the AT2g26330 locus, GeneSeqer predicted a total of 6 

gene regions (rather than the previous 5) and split the AT2g26330 gene into two (please see 

supplemental figure 4).  This makes sense because there is a large region in the middle of the gene 

without any EST sequences.  In this region, GeneSeqer identified one gene with 11 different exons 

and another gene with 12, and therefore no longer performed better than the HMM-based ab initio 

gene prediction software programs (GENSCAN identified a single gene of 17 exons in the region 

and FGENESH identified a single gene of 26 exons).   Thus, the spliced alignment program relies 

heavily on large amounts of EST data (for larger genes at least) and these ESTs are not likely to be 

available for new genomes.  GeneSeqer enables the user to select ESTs from other plant species, 

which may help to get around this problem.  While GeneSeqer functions well for annotation of 

cDNAs, the use of GeneSeqer for identification of new genes would likely be enhanced by 

combining the EST splice alignment with an ab initio HMM based algorithm.  

 In order to investigate the importance of organism specific training, I ran my sequence in 

programs trained for different species.  Ab initio gene prediction programs are trained on specific 



organisms because the genome composition can vary significantly from one organism to another, 

especially for those more evolutionarily distant. (Here, the genome composition refers to the overall 

and regional GC content, the nucleotide composition in signal regions, and codon bias in ORFs, as 

previously discussed).  There are three versions of GENSCAN on the MIT GENSCAN website: one 

for Arabidopsis, one for Maize, and one for Vertebrates.  To look at the importance of training, I ran 

my 20kb Arabidopsis sequence through all three versions of GENSCAN.  As previously discussed, 

the Arabidopsis trained GENSCAN identified a total of 7 genes, and for the verified 27-exon 

AT2g26330 locus, it identified 17 exons, the majority of which were true positives.  The vertebrate 

version on GENSCAN was able to identify 3 exons in the AT2g26330 locus and some exons from 

other genes as well (15 exons predicted in total for the entire 20kb region, see supplemental figure 

5).  Interestingly, the Maize version was only able to identify 1 exon for the AT2g26330 locus and a 

total of 5 exons overall (see supplemental figure 6).  Three of these exons do not have any existing 

EST data (see GeneSeqer output) and do not correspond to any genes predicted by the other 

programs.  They are likely false positives.  Thus, training is very important and the Arabidopsis 

gene prediction (for this specific 20kb sequence) is even worse on a Maize trained GENSCAN than 

on a vertebrate trained GENSCAN.  Notably, Maize is a monocot and thus very far diverged 

evolutionarily from the dicot Arabidopsis.  Maize also has a distinct GC composition and gradient 

from the 5’ to 3’ end of individual genes that is not present in most other organisms that can be 

difficult to model and integrate into prediction programs during training.
4,16

  Maize also has a large 

amount of transposable elements which might also have profound effects on genome structure that 

could impact gene prediction.   In closely related organisms, the genome will be more similar in 

composition and structure and there is thus the potential to use a program trained on one organism 

for another.  For example, Rogic et al 2001 used programs trained with human sequences on both 

human and murine test sets and observed only marginal differences in specificity and sensitivity.
3
    

 The conclusions from my data set are generally limited because it is a small sample size and 

my test set (those genes in the sequence with complete cDNAs, as splice aligned by GeneSeqer) 

may have been part of the training set for the development of these programs.  In order to assess the 

accuracy of a program, it is necessary to use a test set that does not overlap with the training set.   

Oftentimes, the program makers do not disclose both the exact training and test sets.  If the training 

set and test set overlap, then this distorts the data in such a way that the program appears to have a 

greater accuracy rate than actual.  For example, an overlap between the training set and test set data 



increased the exon accuracy of an ab initio gene prediction program from 81% to 86%.
1
   There 

have been several previously published studies that have been careful to avoid these pitfalls by 

selecting genes that were not part of the training set.   

Published Studies on the Accuracy on Gene Prediction Programs 

Studies to evaluate specificity and sensitivity of gene prediction programs have been 

conducted in both animals and plants.   Rogic et al 2001 analyzed mammalian gene prediction 

(human, mouse and rat) in the FGENES, GeneMark.hmm, Genie, GENSCAN, HMMgene, Morgan, 

and MZE using a 195 gene test set.   They had mRNA sequences for these genes and these 

sequences were very unlikely to be part of the training set for the programs because they had been 

entered into GenBank after the programs were developed and trained.  Of the programs, they found 

that overall HMMgene provided the greatest exon SN and SP with values of 0.76 and 0.77 

respectively, with the next best program being GENSCAN.   

The study in mammals (human, mouse, rat) included a large test set of 195 genes and the 

researchers took advantage of this to determine each program’s performance relative to numerous 

gene factors including G+C content and exon length.  They found that GENSCAN performed its 

best (in terms of exon SN and SP) when exons had a GC content of less than 40% whereas 

GeneMark.hmm performed its best for those exons with a GC content of 40-60%.  They also found 

program specific differences in accuracy relative to exon length and exon type (initial, terminal, 

internal, and signal).
3
  For example, some programs have a tendency to under-predict small exons 

while others tend to over-predict them.  It is hard to pinpoint the basis for these differences. It seems 

likely that different algorithms provide better accuracy for different conditions, but these differences 

in accuracy might also be attributed to the actual training sets used in the optimization process.  

Studies to evaluate ab initio prediction software have also been conducted in plant 

sequences.   Pavy et al conducted a study in 1999 with Arabidopsis sequences, in which they 

discarded mRNA sequences that were publicly available during the training of the programs they 

were testing.  Using the sequences for 168 genes, they found that the best ab initio program was 

GeneMark.hmm, which outperformed programs including GENSCAN, GRAIL, and FGENESP. 

GeneMark.hmm had an exon SN of 0.82 and an exon SP of 0.77 (see Tables 1-4 for more details). 

These values are therefore better than the best performing program in the 2001 Rogic et al study in 

mammals.  In 2005, Yao et al evaluated five ab initio programs on eight maize genes for which they 

had obtained cDNA that was not publicly released prior to their study.  Out of FGENESH, 



       

Table 1: Nucleotide Accuracy     

Organism: Mammals (human, rat, mouse) Arabidopsis Maize   

  (Rogic et al 2001) 

(Pavy et al 

1999) 

(Yao et al 

2005) 

Program SN SP SN SP SN SP 

GENSCAN 0.95 0.90     0.81 0.95 

GeneMark.hmm 0.87 0.89     0.92 0.93 

FGENESH         0.97 0.94 

FGENESP             

FGENES 0.86 0.88         

       

Table 2: Exon Accuracy     

Organism: Mammals (human, rat, mouse) Arabidopsis Maize   

  (Rogic et al 2001) 

(Pavy et al 

1999) 

(Yao et al 

2005) 

Program SN SP SN SP SN SP 

GENSCAN 0.70 0.70 0.63 0.70 0.54 0.81 

GeneMark.hmm 0.53 0.54 0.82 0.77 0.69 0.80 

FGENESH         0.86 0.88 

FGENESP     0.42 0.59     

FGENES 0.67 0.67         

       

Table 3: Acceptor Site Accuracy     

Organism: Mammals (human, rat, mouse) Arabidopsis Maize   

  

(Rogic et al 

2001)   

(Pavy et al 

1999) 

(Yao et al 

2005) 

Program SN SP SN SP SN SP 

GENSCAN 0.87 0.80 0.73 0.78 0.53 0.86 

GeneMark.hmm 0.81 0.75 0.90 0.84 0.71 0.85 

FGENESH         0.91 0.93 

FGENESP     0.55 0.70     

FGENES 0.80 0.77         

       

Table 4: Donor Site Accuracy     

Organism: Mammals (human, rat, mouse) Arabidopsis Maize   

  

(Rogic et al 

2001)   

(Pavy et al 

1999) 

(Yao et al 

2005) 

Program SN SP SN SP SN SP 

GENSCAN 0.90 0.84 0.77 0.82 0.56 0.93 

GeneMark.hmm 0.82 0.78 0.93 0.81 0.77 0.92 

FGENESH         0.91 0.91 

FGENESP     0.58 0.72     

FGENES 0.85 0.82         

       
Tables 1-4.  The above tables show results compiled from 3 different studies for select ab initio prediction programs.  

SN= sensitivity and SP = specificity.  Note that Pavy et al did not provide this information at the nucleotide level.  Also, 

in Rogic et al, HMMgene performed better than GENSCAN on some parameters and so the greatest exon SN and SP 

were actually 0.76 and 0.77. 



GeneMark.hmm, GENSCAN, GlimmerR, and Grail, they observed the highest exon SN (0.86) and 

exon SP (0.88) with FGENESH (see Tables 1-4 for more details).   

 These three papers (Pavey et al 1999, Yao et al 2005, and Rogic et al 2001) all used 

GENSCAN, GeneMark.hmm, and a version of the FGENE program and this subset of results has 

been compiled into Tables 1-4.  The different FGENES programs are listed separately because the 

most recent FGENESH uses a different algorithm (see Methods section above).  Because these 

papers were published in different years, it is possible that updated versions of the programs were 

used in more recent studies.  Overall, however, it does look like some programs may be best 

equipped for different organisms.  The GeneMark.hmm in the earliest paper (on Arabidopsis) 

performed better on most parameters than it did on different species in later papers.  The best exon 

SN and SP in the mammal paper was  0.76 and 0.77 (HMM gene) and in the Arabidopsis paper the 

best was 0.82 and 0.77 (GeneMark.hmm).  In maize, the best exon SN and SP values (0.86 and 

0.88) was with the HMM based FGENESH which was not used in the earlier papers.   

An additional study in rice also found that FGENESH significantly outperformed 

GENSCAN and GeneMark (in addition to also outperforming RiceHMM and GlimmerM), although 

these researchers were not confident in whether their test sets were distinct from the training sets 

used in the development of the programs.
4
  Rice and Maize are both monocots and potentially 

FGENESH may be better equipped to predict genes in these organisms, which the authors of the 

rice study think may be attributed to the fact that FGENESH puts more weight on signal terms than 

content terms (such as codon usage).  Rice can be generally difficult for ab initio gene prediction 

because rice has a gradient of GC content from its 5’ to 3’ end which gene prediction programs 

generally do not model.
4
  FGENESH also performed well in the 20kb Arabidopsis sequences that I 

analyzed, and so it may predict well in a wide number of organisms.   

Overall, optimization of ab initio for a given species (or closely related species) is important.   

Rogic et al 2001 found that there were only marginal differences in SN and SP for human and 

murine exons when using human trained gene prediction programs. 
3
  On a more general level, 

however, phylogenetics may not predict the best gene prediction program for a new genome and 

optimization for a specific species will most often give the best results.
7
  For example, Arabidopsis 

sequences may not be better predicted with a Maize optimized program than they are with a 

vertebrate optimized program, as shown previously with the 20kb region from Arabidopsis 

chromosome 2 run with GENSCAN.  One would not expect all programs to perform equally well 



across all species due to differences in genome composition and local nucleotide differences in 

signal sensor regions.  There are differences in GC content and how this content is distributed 

throughout the genome.  Typically the GC content is higher within coding regions.  Monocots are 

distinct in that they not only have increased GC content within coding regions but this GC content 

also changes within the gene in a stereotyped fashion.  Monocots, such as rice, have a negative GC 

content gradient within genes, meaning that within a typical rice gene, the 5’ end typically has a 

much greater G+C content than does the 3’ end (See Supplemental Figure 8).  Monocots also have a 

similar gradient in terms of codon bias and amino acid usage.  Gene prediction programs will need 

to consider organisms with gradients differently than organisms that do not have these gradients, 

such as animals and dicot plants.   

Differences in eurkaryotic gene prediction then do not necessarily fit neatly into plant and 

animal categories. A study recently showed that Arabidopsis optimized GENSCAN outperforms 

vertebrate optimized GENSCAN in predicting exons in sponges.
17

  The Arabidopsis optimized 

GENSCAN had very high SN and SP values for sponge exons (0.83 and 0.79 respectively), which 

is even better than the exon SN and SP that Pavy et al 1999 observed with GENSCAN using 

Arabidopsis sequences (0.63 and 0.70 respectively).  In the sponge paper, however, it should be 

noted that only 18 known gene sequences were used and these were inputted into the program with 

little additional intergenic regions,
17

 both of which could skew SN and SP values.   

Conclusions:  

It seems likely that different programs may fit different organisms better in terms of 

algorithms to identify signal sequences and open reading frames.  There is also the issue of training 

sets and whether or not they were truly representative of the whole genome (with large training sets, 

this is likely to be less of an issue).  On the flip side, there could also be caveats used in the test sets 

used to evaluate the programs.  That is, it could be that genes used in the test set may not represent 

the average gene and thus do not reflect the overall accuracy of the program.  The output for a given 

program depends both on the algorithms used as well as the training set used for optimization.  On a 

general level, ab initio gene prediction does not appear to correlate well with phylogenetics
7
, with 

the possible exception being very closely related organisms.   

A complete set of cDNAs would allow one to determine the exact annotation for all genes in 

a genome.  Establishing a complete cDNA library is not only very expensive, it is also likely to be 

technically impossible due to spatial and temporal expression differences among genes and the fact 



that some genes may lowly expressed or only expressed under very specific conditions.  Different 

programs have their caveats.  Splice alignments rely on sporadic and perhaps improperly sequenced 

ESTs. Complete annotation with DNA sequence alignment depends on genes having recognizable 

homologs in other species.  The ab initio programs use signal sensors combined and statistics to 

identify genes within a sequence, which conflates the complex processes of gene identification and 

transcription within the biological cell.
1
  Notably, ab initio programs also rely on a representative 

training set which generally relies then on representative cDNA and EST data.  These must then be 

acquired for proper optimization, or an ab initio program that has not been optimized for the 

specific genome must be used.  One exception is the Viterbi training in the GeneMark.hmm which 

allows for self-training of a given sequence. For new genomes, it might be useful to combine the 

GeneMark.hmm self training programs with a BLAST search for ortholog alignment to allow for 

further refinment.   

There are also methods implementing comparative genomics for gene identification.  A 

2005 study compared the Arabidopsis genome sequence to the partial genome draft of Brassica 

oleracea.  They found numerous conserved regions in previously unannotated regions.  They used 

this information to isolate cDNA from various regions and were able to confirm several sequences 

allowing for 21 novel gene models.
18

  It seems likely that these methods (and others as well) will be 

predisposed to miss genes that are under positive selection in a given organism.   

One common strategy to get around the limitations of individuals programs is to use the 

programs in combination.  For example, when Pavy et al 1999 analyzed program on Arabidopsis 

sequences, they combined the highest HMM program, GeneMark.hmm, with the NetGene2 to allow 

for better splice prediction and were able to increase the splice site donor specificity to 0.94 

(compared to 0.81 for GeneMark.hmm and 0.31 NetGene2 on its own).    

Another possibility to improve gene prediction is to develop models on subsets of genes. It 

has been shown that different programs perform better or worse for particular genes.  The Rogic et 

al 2001 paper documented this based on GC content and exon length and type.  Brendel and Zhu 

have noted that differences in prediction power for different genes is a likely indication that current 

models are too general and that prediction could be improved if models were trained on subset of 

genes to optimize parameters for different gene classes.
8
  Some of the major problems facing gene 

prediction are the presence of pseudogenes and alternative splicing.  Overall, however, gene 

prediction at the exon level is very good and new methods promise to increase the accuracy further. 
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Supplemental 1: Graphical Output for FGENESH analysis of a 20kb region on Arabidopsis chromosome 2.   

In addition to exons, FGENESH also provides information about the transcription start site and the Poly(A) 

tail.   

Key:  

CDSf - First (Starting with Start codon)  

CDSi - internal (internal exon),  

CDSl - last coding segment, (ending with stop codon);  

TSS - Position of transcription start (TATA-box position and score) 

FGENESH provides a text output of boundaries for each of the exons and a statistical weight for the features 

shown.!
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Supplemental 2:  Graphical Output from Genscan trained on Arabidopsis using 20kb sequence from Arabidopsis Chromo-
some 2.  The coding segments for predicted gene exons are shown in blue. 
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Supplemental Figure 4.   

Geneseqer run for locus AT2g26330 (sequenced AT2g26330 cDNA has 27 exons). In A. the entire 

available Arabidopsis EST and cDNA databases were selected to run in the analysis while in B. 

only a subset of the database (Arabidopsis ESTs only and not full cDNAs) were included.   

Key: (as described by Geneseqer): The orange bar corresponds to the predicted protein structure, the 

green bar to predicted gene structures, and the red bar corresponds the EST and cDNA spliced 

alignments.   

Note that the predicted gene structures typically include UTR regions, as they extend further out 

than the predicted protein structure.   
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Supplemental 5:  Graphical Output from Genscan trained on vertebrates using 20kb sequence from Arabidopsis Chromosome 
2 (compare to Supplemental 2 showing results for same sequence run on Genscan trained for Arabidopsis)
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Supplemental 6:  Graphical Output from Genscan trained on maize using 20kb sequence from Arabidopsis Chromosome 2 
(compare to Supplemental 2 showing results for same sequence run on Genscan trained for Arabidopsis)



 

 
 

Supplemental Figure 7 (Reproduced from Yu et al. Science 296 (5565):79)  GC content 

can vary from one organism to another and generally GC content is higher within exons 

than introns within a given genome.  The authors note that in some organisms the average 

genome GC density is less than 22% (42/',%&0.,()/250-/*.,Q!%61!06!'8D3()!08!0)!.'(3!8D%6!
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Sequence:  Arabidopsis thaliana chromosome 2 fwd strand (11207501  to 11230701) 
tcaaaaatagaatttaaacttagaacaagttttgaaaagggtaggcttatcagtgggataaacaacaatcaagacgattttacaatcgcacaacagtgct 
actcttctgccttcttgaaaagtctttttttttacgttttaattatttactacttcttcttttatgtattttttttgtgtagactctcgtaaatgtatac 
ataaaaaccaaagttagtagattttagttgtagtaattagttcttgtctaaaatgccttttttgaaaaaaatcttaggaaaatgccatttttaaatggtg 
tacggatttatcttttttaacattttaaaatgtatgtatttacgattttgattttgcaaaaatacgtactttatactaaactagaaagtctcacgcgctg 
tatgagttcgaattaatataagaaattataaaaaaactatataaaataaattaatcagacaatatatttgtttatcatttttattgccaagtgagaaaac 
ttattaacctatcgtttgcactctcatagacgtggttgacatataacactacatagcaaaacgtttctcgtagtttagaaggttctttctatgtatatgt 
ttttgagcataagaaatcttttgtggtggtgacgtggtgttgagtactagatctaagatatgttacaagaataacccaatttagaaaaacttagataggc 
aagaacttataggaagtctaagtgccagtctgaagacatattcacaccacacacttgtctaataataataaggcagtgcataatactttacatgagacat 
taatttttctaacagcttaacgcaacgaaaagataccgttttaaagattctcctcctaacgaaaaaCTACTCACTGTTCTGAGAAATAACTTGTCCAAAC 
CGAAGAAACAGTTGAGCATCAGAAGCACTCATGGAAGAGCAATTGACAGAATGAGGAGTCTTGAGATTTGCATACTCATCGACGTAGCACGAACCAGCCA 
GCGTCGCTGACGTGTCAGTCGCAGCAGGTGGTTGTTCCGATAGCATAAAACTGCCGAGAACACGAGTCACCTGGTGCATTGTGGGTCGATCATTCGGCTG 
TCTTTTGGTGCATAGGAGTGCCAGTTGGAAAACTTTCTTCACCACACCGAGATCTTTACACGTCGATGTGATGTCTGGATCTGCCATTTCCATCACTTCA 
TTGTTCCCCGTCTTTGACATTATctgatgtaagtgaatcaatgaaaacaagattacggacttgacctaaacagagcagctgagagagataggcaagaaag 
aacaaacCAGATGGTGGAGATTGGATTCGTCATCAACGGCTTTCCTTCGGGTTAACAACTCAAGAAGGACTATTCCATAACTGTAGACATCGGATTTCTC 
AGTGAGCCGTGAAGTGCGAGCATACTCGGGGTCTATGTAACCTATCGTGCCCATCACGTAAGTTGAAGTATGTGACTTTGACACACACAAGCTTTTCGCT 
ATTCCAAAATCTGTCAAACGAGCCTCTAAGTCTTTGTCCAAGAGAATGTTGGACGACTTCACGTCTCTGTGAATGATCCTTGGACTACAGTCATGGTGTA 
GATAAGCTAAACCTTGTGCTGCACCATATGCTATCTTAAGCCGTGTGTCCCAATCAAGAGTCTTTTTCTTCGTAGGGCctttacaaaacacacaagcaag 
ttgttatgtcacagaagattcaaataattttctatgtttggcgatgagacttacCATGAAGAAGATCCCAGAGGCTACCATTTTCCAAATAGTCATAGAA 
CAGAAGACTCCCCAAGTGAGAGAGGGAATAAGCTTGTAGGCTCACAAGATTTCTGTGCTTGATGCTACTTAGCATCTCGAGTTCTGTTTCAAACTGTTTC 
ATTGACTGTGGGTTGTGAGAGTAAAGCCGCTTAATCGCAACCGGTTTACAATTCTTCAAAACACATTTGTATACAGTGCTTGATGCTCCGTGCCCAATGA 
TATACTTCTCACTTAGATTCTCTGTCATTCTCATGATATCCTCGTAAACGTGGAGTGCCATGTTCATATGAAGGATGACGAGCTTCGGTGTCGAATAAGT 
TActgatgtcaccaggaaatttaaggattaactattggattacattgtaggtgaagaacattcgtaaagtggtttggagagtagacCTGGTTTGTCAAGT 
GATCCATCAAGAAAAGGAGGAGGATTATGCGGTCGGCAAGCTGCTATTAAGACCATGAGAAGGATCACAAGTCCCCCAATAGCTATTCCAAGAATAGCTG 
CTCTAGAGATTGACActgcagacaaaacatggatagaaacatgagctttaattatcttaggttttgtgaatggaagcttttagaagaatgtaatcacCTC 
GTACAGTTCGACGAGAATCATGACACGGTGAGTTTAGCCAACTACCGCAAAGACCAGGATTGCCAATGAAGctttatccaaaaacataaacatagatatt 
agcaaacaaaacaaaatgcacaataccaaaacctgctaaattaccatacCTGTCTGGTGAAAATCTTGAGAAGTTATTGTTCTTAGGGATATCACCTACG 
AGGTTGTTATGAGATACATTCctataagagttagtgaagattgcagggttatattcttagcaaaagatgcacaaagagggacaaaaaatgtttcagaacc 
aaaggtgcctacttacAATACAGTGAGACTGAGACAGTTGGCTAATGAACCAACATTACCAGTCAGGTTATTATTTTCCAGTCTCctgcaagcaatttta 
agaaacacaacattagatagatcaccaacccaatacatgttcctggatcacactatagtgacctcattattgtgtatacagagttttagtttcattctac 
aaaaacaatttcttaacagcttggaagggataagaggaagattgcttacAGCAAAATTATGTTCTGTAATTGGTTAAGCTCTTCTGGAATTGGGCCAGAG 
ATATCATTATTTGAAAGATCTctgcaaccacaaacacacaaattcagaacagtaattgagataaatgaaaaaaactctaaccaagcagatagaagttaac 
ttcttacATTTCCATGATGCTTCTTAGATTTCCAAAGTCGCCTGGAACTACACCAGTTATATGATTTCTACTCAAGTTCctataacaagaatgcaagagt 
tcacaaaccattttcatcttttgctagaaataaacaataaaactggaggtcttatggatgctcacATCTTGAGAAGATGCTCCAAATCACCAAGGGAAGA 
AGGAATGATTCCATTTATCTTGTTGTTGGAAAGATCCcttcaaatgtcattaaatttaataaatgtgagacaaggcacatataatgatgtatacttcaca 
gaaaacaagaaacacttacAATGTATCTAAGTTACCGATACGAGATAGCTCAACCGGGATTGGACCTTTGATATTGTTGCTGGACAGATTActggttgaa 
ccgataaatcaaaggcaaccaaaaactcagtagttaatgacttgaaattcgaaaaaacaaacgctgtggaactatatattatataagattagagaaattc 
tcagcgtcgatacttacAGGTAAGTCATACTTTCTAGCTTTTGAAATGCTCGGGGTATAGTGCCACTAAACTTGTTCCCATGAACATTTctacattacat 
taatgagacacaaaatcatataaagcaccaatcttgaacattcaagtgagaagttttcagagaaagagatacatacAAGCTGTTTAGATTTGTGCAAGAG 
CTCAGATGATCAGGTATAGGTCCTTCCAGATCATTGTTGGCCACATTCctatatgtacatagttcatataagcataagaacatcaaaacatgtcaagcat 
aggaagaactacttacAGATCAAACAAGTCAGTAAGCTTCCCAAGCTCTGGTGGTATATGACCCGTGAGATGATTATCATTGAGTTCCctatgaatattt 
tacaaatagttgataaggaaacacaacttagtagtgactgtatgcaaaaagagaagtgaagagaaggttggtcatacAGGTAATGGAGTTTTGACATGTT 
TCCAAGCTCAGGTGGAATTGAACCAGTCAGCTTGTTACTGTGCAAATACctagagataaagccaaaaagataaatcactatcattaacatggtatgacat 
ttgactccaaactgaaaacaaacaggtaaagaattacAATTTCTCGGTGAAAGTAAGATTTCCGAGAATCGGAGGAATAGATCCACTCAACAAGTTGCCA 
CTTAGATCTctgtaaaagaaaacatataacctaagttcatgaaaatgttataagtagcttcattgattagaagaaaagtacttacAAGACTGCAAGGGCT 
TGCATGAGACCAATCACTGATGGAATCTTCCCAGAGAGTTGATTGCCTTGCAATGATctaagataagaaaatgatcttctttaaaagaaaacaaaggcta 
gccaaaatttaaagcaaaagattagtagaggtgagaactaacAATGTTGCAACTTGCAGGAAGCCGATGTCAAAAGGGATCTCACCAGTTAGCTGATTGT 
AGGACAAGTCCctgagttcgtaataagcaaaccagttaagtagattttcttaagtaacccaaattacagtaatgatgtttagaagtagagaaagaggcac 
atacAAAACCTGGAAGGCAGTGCAATTTCCTATCGTCTCAGGTATACTACCAGTCAAACTGTTGTTTCTTACGTCActgattcaatatcaaaacaaagtc 
agatatttgatatttacaaaagaactcatcatactattcagatgtgcaagaagactcacAAATACCAAAGACCAGTCAGTTGACACAAATCTGGAGAAAT 
GTTACCGACTAAGTTGTTTCCTCGCAACCCActgctcatcatagtacaacaattatcaccgggtaatgaagagacattgacagacttcaaaaaacattga 
cacttacAGATACTGAAGAACTTCATTCCAGTAAATAAGTCTTGGTATCTCACCACTGAGTTTATTCTGTGCCAAGTCCctgcaattgaaattacacatg 
tatgatcacctatatagctaaaagtagtaagacatgtaagaatcatggggaacatacAGAATTTTCAGGTTTGGAATCTGTGAAAGTGTTGAAGGGATCG 
GTCCTATCAATTGGTTATTCTTCAGAATCctggacaaagtaaaaatccatattccacatggtgagtatatttttagcaatgacatatgaagactagtagc 
agaataactagctacttacAGCTGCTCAAGTTGCTTCAACTTCGAAATCGAAAACGGTATGTCACCACTTAATTCATTGAAGGATAAGTCTctgaataaa 
aaacaacatgaacacacttcatcaaataaaacctctatgaacaaaagtttaatggtagaataacaccaatcactgttcttacAAGTTTTGCAAAGAAGAA 
CAGTCACCAATCTCATCAGGGATTTGTCCAGACAAGCGATTACCTCGCAGATCActacattagaaaaaaacagaagacaaaagtcacaactcagagagtg 
gaatagaattaaagtaagatactttatttcatgctacagtgaatgttgaaacagttacATTGACAAGAGACTCTTGAGATCTCCAATAGCAGGTGAGATT 
TCTCCATCAAGATTCAAATCTGACAAATTActacaaaacatagaaaacacacacaaaacaaattacaactttttcccacaagaacaccaaaaaccactgt 
aatagtaatctaaaggaatgaagaaacttacAGAGCAACAACATTGAAGGTGACATTTTCACAAGACACACCTCTCCAGACACAATAATCCGAAGAAGGT 
GAAGTTGTCCAGTCATAAAGAACATTGTTCACATCTTTGAATGACTTCTTAATCTCCAGCAACGTTGCTCctttaattttgttttaaggatattttatta 
acacacacgcacaaaaacaaaaaaaaatatttgtcagttcttgagaagattaaaaattcaacttccaagaaaacaaaataaaactcaaaccctaatttat 
tcaaagcttcttttgattctatagaagacccaccaagtaaaaaaaaaccattacaaaaagcaaaaatagaaaataacaagtacccagatctcattttcac 
caaatgaaacttcaaaaatcatataaaaatctcatctttaagtttttttcactaatataaaacaaaaagacgaaaatcttgaacttgaagaagcatgcat 
cagtataataactgacCCTCCTCTGAAGTCACAGTAGCTACTAAGCTCAAGCAGAAGAGAAACCCAAGAAGAACAATATCTCTAAACAGAGCCATttctc 
acacacagtcttaaaacgactgcgtttttagatatactttaaaagctttcaagtctccatgaagaagaaacagaggatagagaagaagaagagaaccgta 
ttatgtaccgacattagattttttttctttcttttattatgatttctacagaaatttgtttttgtttttttactttaaccgagaaaaaatgatttttatc 
gttccatcacatcaaattctggcggaaatttacagtggtttcattgagtgctcagacgacagaaatacagagtaagatagagatggagagagaaagagag 
agagtctttaaagagaggagattgtacaaatgtagggacctgttgtgtaagagagagagatgaagggaagaagaattatttggggaggataaagttaaaa 
accccatcatcttttatctctctgccagagttctgaagctttgcagaagagagagatagagtgagtgagagggagtgattttgtttctctctcttgaagg 
gtaaaacggtcataaaatgtagaagaagaaggagaagaagaacatgttaatggcagtggtgaataaaggaggtcgctttcgttgcccaatacttacgagt 
ctttgtctctctgtggcttgtttcacagatgacccatatcaataaatccatcttatgggtacttttgtaattatgtatttttatatgattttagtgtaat 
ttttttgtttgcttaacatgttcttcttcatcttcttacttcaattactaatttaaattcaggagtttacaaaaagtttggttcagttttctcttcttta 



attattagtatagttgttgtgtttttgtcaacgttttttagtatagtgaacgtgtgatttctaagtgtttttgtttattactaaatttagaaatatgcat 
gccaatgatttttggtttagcatcaacacaaaacttaataaaatatgattggttttaggatgttaaccggtttggttggctccggtcggtttgtcacaaa 
attaatattttgaagctttgagaacgaagtggactaaaactaaaagggtcacaggcccaacaaaagaaggaagaacttaaaaaataataattccttttca 
ttttaacttctctttttttttttgttaaatcatttatttgtttcaataaaaatacacataatattatcttttctcaaaaagtactatatagttagaaaac 
tacatatttattttaacccaaattattatttttccattccttacacactgtacgttacactttttattatcatttgctgtacaacgttaatatttttaac 
catttctgcaattgtttacctctttttcatccgcaaatttctaattaaattatATGTTGAATGTTCATAGCCATAATAATAATTTGTCCAACGGAGATAA 
GACGCCTCTGGTGTTATCCCCAATGTCGTCACTCCACGCTACCGTGAGCCTCCCACTGTTCTCCAACTCAAACCACAAAAAGCTAACGTGCGCAGCTACA 
TTATCACCTCCGCCATGGAAACAGAGCCGGCGAGTTATCTCCGTCTCCTTTTTTCTCTCCCGTCTCCTCCTCCTCCCTAACGgtacacgcatctctcttc 
aaattcaccaatccgattctcaatttcacgaactcgattttcaatatcaccaattcgacttttgttcatttcaaatttggttatttatatgttgatgatg 
atgatcagATGCTATGGCTGGTGGCTTAATGGATAAATTGGATAAATACGTCAAGAGgtaacattaaatcgtctccgatgcttattcctttgaattctga 
agttagattttgaaatgtttggtgaattatctaaaacttaaaaccagttattgaatagGAAGAAACTTGATCCACTTGAAGCATATGTACCACCAGTGAT 
TCTAGCTCAGTTACAAATCCAGGATCTTGgtaaaatttctctgtttttttgttacacatttgttcttaaaactcttgctatataaaacttacactcatgt 
ttatttatgatgttggagAGGGATTTTTGAATGTGGAGAAACCTGAATTTGAGGCGTGTAGACGCCAATTGCGGTCTGGTCCTGCTAGCTCTCTTCGTGT 
AAACATTCGAGCTgtaagtttttaaagctcacttgatgtcactcatttggtttctgtttgatgatgaaatgtgtaatgcaaactctttcagGTTGCTCAG 
TATGCTTCAGATGATGGTTTCTCCAAAACCGCCACTGATGATGTTGATCGATGTTTAAGgtaccgacaatgtttgaatgaatgatgatgacctttgcgtg 
tgtaatttatgttggcttttccttctatagAGCATTGGAAGAACTGGATTCGTTGTTTCTACGTGCGTCGAGGAAAGATTCAAATGCAACTGTTGTATTG 
ATGAAGTCACAGCTTGGAACAGCGTTAACCGCACTGGACAGTCTTCTACAAACAGTTCCTTCTCAAGTGCTTGATAAAGGGAAAGCTATGGTGGAAGTCT 
ACAGATCAGCATCTGAAGAAGATGCGGGAAGTGATGATTTAGAATCCTCTGAGATAAAGCAGCTCCAGTCCATACTGTGAgaggggaggtcacaggacta 
ttactatccaaaaacagttgttaatcttacagcattggtatcaaaaactcttctgattcagtgtatatcatgtattgttaacttcaattgatgcatatat 
taaaaccagaatagtttgctgctaaagtcggcgaggtgacatgatccacatccacttaccggttctaccaatgcaacatctgctacacataaccgcatac 
gtatactggagtaatcttatctagcttatttccgctgggtgatgacacgctcatatatctctatcaattgttaaaccctttcatataagacatctttatg 
tttaagatttccatctaggaggattaacaaattgcggagcaaaatcactcttgagttcttaagagttactctcgattttgatatctttctatatctccaa 
gaaacaagggttgtctgaactcaatgttcagtttgtatgattaaggtgtcgttcgtttgatcagttgactgatgcatctagatgcagatgataactgatg 
ttcgtttgaacacaatataacagaatagtttgatacatcagttggctgagtttataaaactcattcaaaaaaattaaaatatttagctgactttgatcgg 
tgcatctagatgcatcagctgcagtcaaaaatggtaaatctctaaaatactcctttaaaatttgaagaattacactaaaataaatatatgtcctttttag 
tcatttggtacattatgcattcagatgcagatgcacattgttaaaaaacaattcaaacgaacacatctgcattcaaatgattcatccagatgcactatca 
acttcagaaacgaacatcatccaaatgatgcatctgaatggatcttctggatggatcacccagaggcactacctaactgattaaacgaacaacacctaac 
attttaaaatggtattgtgcctaatatgagattttcttgtcttgtaatagatctccaattgagattattatatgtaatatagaatgtgaaagaccaccta 
acatctccaactctttttaatgaaatgtaaaacaacaaacctctgtggtttctgcactaaatatcatagagaaaaaggtaggcatgggatcgagaatgat 
gtcagaaatatatttattctgtcttctctcataacttgttgatcttactcaaaaagtctgaagccgaagcagattccattcctgtagcagatgcactgtc 
cttaggtgtcactgtcttagctgctttgcctttctgcagtgcctgtctttgttgatcccattgtgcCTAAAAATCAGAATGATACAAACAAACCAAACTT 
GAATGGGTATTGGGCGTTCGACAAAGAGGGCATTCTTGCTTCTCGTTGCACCATTCCATAATGCAGCTCctgcacatgacaacatgactttcaaaatgag 
cacaatgttccggtgtcaacttttggatcttaggttttgtagttcgagtaaatgttcgatacaaagttcatcttatcaaaagcagtttcaaccaatggac 
atcaagatattgaaattctctggattctgaaacttatcaaggtttgtaggtgttaactcgttccagatcaggcccaggacaaaataagcaattacggtag 
aggaaggtttattacCAACAAAACACATGACCACAAGGAGTGGCCGTTGGGTGCTGACGGGTGCTTAAGCAGAGAGTGCATTTCCCTACTGCctgcaatc 
gaagtacatagcaaggtaaacacctaacataacaagtggtaacatattgatttcatcaaaacgagagaaaaataaacccctctggagtttttttaaattt 
agaatagtctcaaaataggattaacatataaccttgtctcgctagaaactatatgtagagcgggatcagtcgagtggccatctactcttatcagatactc 
ataccaacagagtaaactatcattttggttttcttaatcacacttatacaacataacctttgcgtaagagcataatacattttgctcagagttatgtgcc 
tctcttccaagtatattattacctattgtcctttcccaataatgatcactattcaagatattagccattacaaagtaacagaagtttctaacttatttat 
aaatattttacCTCCGTTGAAGTTGAATCGGAGGTAGACCAGTTTCCCTTTTCAGCTTCCGAAGTTATCAAATTCCCCTCTTCATTTAAAACAGGTAAAC 
CTCTCCctgcaagaacaataccaaaactatattactgtaatgtgaaatagggtgatgcataacaagcagaatatttcagcctatgttatcttctctcatg 
tatctttctaacaaacttttaccatgatgccaatttagaccatagtttattgaaactatagtactgacaatctaacatatatatcctccacaaatatccg 
taatgttgggaaattctagattattaacattcataatcaaggacatgagagccagacCTCCTGAAGTTTGATAAGATCCTATAGAAGCCTGCTGAATGGA 
GCTAGTGATAGATGACAAATTACTCCGACGCAAGCCCTCAGCAGCAAGGATGCACAATTGGATTAGAAGGAAAACCCCAAGAATTTGGTATctgctcaac 
aagacttaagggagttcagttactctgtgatagtaaaagtcaagagttgcaagtgtaaaagaagacaaaaaaatcattacCTAGGTCTCTGATTCAGTTG 
CTTTCCTATGAAAACATAACGAACCCCGGATGCACGTTTCGATATATGATAATAAAAACctgaaaagaaacaaaggttactagttcagaacatgctctac 
atgagttaaatatttctcacaaaattcacCTTCAAAGTAGAAGAGCATCAGATTGGCACGCAAAACCAGTTGTAAGACTTCGCGGGCAACAGGAAGAACc 
taaaaggcacaaaaccttgtataaaacaacatttgctacgcagaaaacaagtgaacgaaccatggaaaattaaacgtgaggggtatacattacCACAGGC 
CATCGCTGAATAGCTCGGTGCCACGATCTCATAAGTCTATCGTTTAACCTAGATACTACAGAAGTTGAAGTTTCAACTTGAGATGAAGATGGAAGATCTA 
TCATTCTTGGTGAGTGGATATGACTATCACCAAAAAACTCATCAGACTCATCAAAGGTGACTGCTTGCGTAGCAGCTCGAGTGctgtagacaattatatc 
aatatcagcggacaagattcaaatttttctttgtaaaacaacaataagaaatgcgacgaaacCTAATTCTCTCTGCGATATATGGAACTGCGGTCTGGTA 
CAATATGAACAAAGCACGTCTAGCTGGTGTAGGAGAGAGTCCATAAGGCCCTGCAACctatattatatcattctacatcagaaggtaaaatggttttgta 
gaagcacacttaaggaagattgtataaagtaacaaaaacCTGTATAATGTCACAATATTCCTCTCCTAAAGTTTGTTGCCCTGAACCTGTCGTAAGAACA 
TAGTAAAGCATCTGTCCAAGTAGCTTCATctatccaaaaacaataaaaacaaataatcaaaaatctcatggaaactcagacaaatataatttagtgtata 
ttacCTCCTTCTGGTAAGCAAGAGCGATTCTTGTACctaagagtgataaaaattagttattaattggacaataacgatgaagcaattaaagtagacagtt 
gttgttgtttggtttggtgtcggaaaaattgtacCGAAAAGGTGTCGGAAGGCATCGCGGCAAGCTTCGTGGATGAAAGAAGCGTATTGATCGTCTTTCT 
CAGCAGCTCTCATAATCTCCGGCTGAGCTGCTAACGGGAATCGTCTGATTCCGCCGTGAAACCCGCTCGAACCGGGTTCATCCTGACCCGGACCCGAATC 
CCCATTAAGCCTCATcgtttcttttttttcgtggatcgatgaacttgccgaatgatgttttttattcggcctttgatatttttttttaattcaaaggaaa 
aataaatatttgcaaatgtatcgatgccatttatatatgagatcaataatattttattaattataatctttttaattatttttatgatcaaatatttgtc 
tatattaagcagtattttgtaatagtcaatcgattcgggtgagctgattagttttttagaatacatgatgttaagtaaattatgttaaaaataaatccga 
gcaaagtGTTTCCATAATTAAATTATTAAAGGAGATATTAACCTTGACGAAAACTTTCTCTCTTCTCTCTCAAAAACTTTTGAGAGAGAGAGTTTGTTTT 
TTTGGTAAAGTCCGATCGTGATCTCATATGCATGTTCTATCCTCGCCGTCCGGTTTATCCGGCTCCTGTCCAGCATCGACTAGCTTCTAAAGTAGTGTTg 
GCTGGCTTATGTCTGGCGATTTGCCGTCTTGTTTACGGTGTCTTCGGCCAGTTTTGGGTTTGTTAAGTTTTTTTGTTTCAATAATCTCATTAGATCTGAG 
TTGGTGATGATGTTTTAGGTGTTGTGTCACTTAAAGAATGGATTTCTCCGACTTGTTTCTTTTGAGCTTTTGGTTTGCAGAAATCTTTCCAGAGACATAA 
GGAAAGAAGAATCTTTCGAAGCATATTATGATTGCCTTAAAGCTGTTAGTTTCTTTTTGGAGTTTCGATTAGCTTAGCAACGGTGACAAACAAAGGATTC 
AACGACCGATTATATTTCGGCGATAATCTTCTCACCGAAATCGATGCTCAACGGCGAAGGTTGATGTCGGAAATCTTTCGATTACTCATCCAGCATGTGT 
CGTGGTTGTATCCAGTTGCTGACACGTGGGCTTAGGTGGAGTACAAACAAATTTTCTTATGCAGTATGCGGTTATCCGATAGGCTCTTGTTGGGCCTCAA 
ATATTTCTGTAAACTTTTCGTGGGGCTTTTAGTGTAGCCCGTGTATGATCGGGTTACGTTTAATACAATACTACACTTGAGAAAAAAAAAAAGAAGTAAA 
TTATGTTATTTTTGTAGAATATATTTTTTTTTCTCaagatttagaatacataaacatgaaataaattattataacacaaaatgttggtctagttttccaa 
tcTTACTCACTATGCACTGATTGATTCAGAGGTGTGATCATAGCCTTTTGAAGAAGTTCATAGCCAGCTAAGTTCAAGGCTCCGAGAGGAGCAGTCCAGA 
AAAACCTTGGAACAGCTCCTTTGTAGAAAGCAAGAGGACCCTCATGTGTGAGAATTGAATAAGCAGCCATCAACATCGACAATTCCACGCCTTGTGGAGC 
CGTCATCATTCTTGTTTTAATCACATCGAATGGCGTTGTTAAAACTGCAGTGAAACCACCGGACAAGGCTCCAACCGCGATGGCTTCCCACGGCTCCAAC 
TCTCTTCCTAATTGTCTCTCCACCACctgtgaaactcaatcgcaaccacgtcttattaattacacaaagacatgtcattgttctgttctatcatgattac 



CTTCTTTGATTGGTTGTAAAGTCCCATGCCAGCAACGTAGAAGGGAACCTCACGTAGAAGGGTAACACCGGTCCCACGAAAGAGTCCTTTGAGCCCTTCT 
TGATGCCAAGTCGAAACTGTAGCTTCCACTATGTTATCAAACTGGTTGGCTTGTAACCGTTGTTTCAACACTTCACACGGTATTCGCAACGTTGTCCCCA 
ATACCGTACCAATAAAAGACGCGATTGACTGAACctaaaataatcaagaagcaaaaaaattcaaagaacgaaacattatgtagcaataaagttggcaatg 
agctttttacaattactaacTTGAATATCAAGAAGAGTAGGAGCAACGAGCGGTAACGCAAGTTTACTTGCTTCATATATACTTGTTCGTAAACCATGAc 
tgaaaaatgtttaaacaagagatgaaatcatgataatgcttataaccaataaccacaaggcaaagcataagagatgaaacCTAGCAAATTGACCAACAAC 
AGCCGGAATCGAGCCTTTGTATAAACCTCGAGCACCAATCTCTGGAATCTTTGACAATATTTCGAGAAACGACAATGTAGTTGATGCTTGAACTTGTGTc 
ttaatgatccaagacaaatgtaagtaatcagaacaatctcataaacacaaaagaagaacctgaaatgaaattaccattatacCTTGACAGTATCCACTGG 
ATGCATCAAAAAAGCAGAGAAAGCACATGAGATTCCTCCAGCTAATGCAGATTTAAGAAGATGACCAACATCTAATCCAACTCTTGTCctaacaaaacat 
gtagtttagacacaaatgttttaaagaaaaacagtatctacaaggttcttgtcctcacCCAGTATCAAAGTTCTTGCCTTTAGCAACAGCTTCATTGATC 
AATGGAGCAATTTCATTGGATCTTGAAGTAAAATTTCCAACTTTTGCAAAATTTAAGCTAACTATAAAGCTACACGCATCTGAATTCGATTTTCTACGGA 
AACAAGAGTCAAGCTTTTGAGAATTTAGAAACAACAAATCATTGAGAATAGAGAGAAGGAGAGATTCAGGTGATACATGTTTCCTCTTCGGAGCTTTATT 
CACCATTGTTGATTTCAGTGGATCTGTGGATAAACCTTGAAAACTAACTCTGTTCTTCATccgtcattagaggaaaacagaagagtgatttaagtgagat 
tagtcaacgtttgatccaaatagtggttttgattatcgaattaagccatttttgttagtctttgtttaaagtattagtaatttagtatacaacaacaacg 
catatgaggtgttcgacgaaatgactgtgttaaaacaaattgagatgtgggactgaaacaaaactagaggtaactattttaaccaaagatgtcaaaatga 
gtaaccttacccaaacccacatggatttgagattttaatagacgagtttgacccaacccatgtatttatataagttgaatttatatactcaaatccacaa 
ccataaaatttattggtttaattggttatattgatatctagataaaaataaaagaaaaatttataagtaataaaaatctaaaaaacatattataataaaa 
ccaagaaaaaatttcagtaacaaattaaaaaatatctagatattaaaaaaaaaaaacatcttaaaatcctaaagtcctaaaaccacaaatccaaaaaaac 
acaaaatcatatatatatatatcataaaacatgttattcatgcctactatttttatagtctattagattaaaatattttgcttaattagtggaccgaatc 
aaagtaatatccagatatatttatatgcttcgttaaaagcgagattttagaatatgactttagatgtcatttgtatttttaaccaaaatataaataaaat 
gtcattggtattgccaactatgaccaaattcttcaattcacaggcatgtgtgagttcatgtcgaagaaattaaagattcacctatttaaccggtggtgca 
tctcaaagtggggaaacaaaaacctctaataatgaaagtatttgccaggttgtgtttagcttcgaccatgtggttcgggtatggtttattttattttatt 
actatttcatcttatctcaaaaataagatttgtatgccatgttgcgttaacgttgaccatttagttccccagtatatggtttaagcgcaatgtatatcta 
tgcatacatttttgttttttcggtttgtgatcggttttaaattttgtatgatgctaataacagttgtgttttggaaatcacgccgaaccaacagacatgg 
tcgcagtcaaacaactccatctttgggatttttttttatctaaaagaattcacgtccttgtatataaaaggtggtaatatttgaaatattgagatttcag 
gcaacactcatttttttaagattctcacgtataaattaggattatatcatataggaataagtataacgtggaagattattatatagggatgaatcatcca 
ctagttaagcagaatattatattatatagactatataaaatactaggcatgaatgaatttaagcatacgtattacagacttgtttgtcaaaacaaaacag 
gcattaatcttttttatctttcgaagatataacccATGGCGATATCTCACGCCCAACCTGTTCTGCTTCTCCTATCATCACTCTATTTCTTATCTGCTTT 
TGGCGCCGGCGCATACAATTTTGAAAACTGCAAAAgtaagtatcgtttttgttaagtcttatattgttatatagaacatcaattcttgttacttgataag 
tcaattcaatgaaaagaatatgcctgaatttcatagattgtggtttgctcctatctctgttttttgttttaccaaataaatcttgaaccggaactcacat 
tagtcgtcaattccataaaacagaaatagagtattttgctactgtgaaaacgtttatatagaaagaacagatcaatgaaactatgaaagtactcccatct 
ataaaataacccaataattgtgaagtattcaccgaagacttttttcttttttttttccttcagtgtggttttcgagagccgtggtgtataagtcaagaac 
tgagtattataactaaaatattgcaggtccagagttcctccaatattcaaagatagatcaaacaatttgaaatctgatcgaaatttaaaatagatttatc 
ttttgttaatcctacaaataaataaataaagaaacacttacccctatgaccctatcatttgacataccaaatttccaaataaagaaatttaggatttatt 
tttgtaagaaattaggatgtagatccaagttttttttttacctgccatgacttactgataacttctacaattgttaacatgctctaaatcggtgcgacta 
aagATGCACCTATTGACTACAATTACGGTATTACGAACGTCACACGTGTGGAGATCTCTCCATACCCTGTTGGGCCTTACGACGAGCCAACCATTACCAT 
ATCCGGCTTTACAAGTGATGATAgtacgtaatattttctattcttttaattgttttcatttatagtttccaatatcttatcttgtaagaaaatatatttg 
tgtttacagGCTACATCATCTATAGAGCAACTATACATGTGTTGTATAAATATGAAAATGTGAATAGCACTATAATAAATTACGACCTCAGTGATGTGAT 
GGGTGAGGATCCATGCTCTATTGAACCTGGCGAAAAATTTGTGTTAACTCTTTCCAAAGTTCCTGGTTTGCAGTCACTCCCTCATgtaagtattttttat 
tttaatttttggacaaacggtttcactttgataaatgtattttaaaaccgaacaatctaaaaaccacaatagtatatttacttggtttgcctgacggttt 
tttttttctttctttaaactaattagAAGGATAAGTCCAAGATTGTCATATCCCTTGTTGATGAATATGGTGATGACGCTGAAGTGCCACTGCTAAAAAT 
GTGTGTTGAGTTCGATAACCCTGCTCCAACTACAACATCGGTCTCTGCTTGAttaaatccaattggcttatggaaatatgttttcaattcttcatatgac 
actcccgtattacttgcatttttttttcccttttcgtgttgttcaacaaataaaagaaatattgaatttatagttttatacgactctctcgttaattact 
agcatcctttttatatttcagtaactatatagaaaaaaattctaacgcatttgctaaaaataagctacaacaacaaatctctagctatgtttttatcgca 
aataagctacaacaacataataagctacatttgcacatgaataaacgatgcacgaatctgtctcaccttgttttatacgtatagagcgcacttgttttct 
agaaacttttccattataattgattagttcagaaaaaaattagaagatttgaaggtgttgtgtggcgatattcatataccaaaatcagtaacacaaaatc 
agtaaataaaggaacttaaagagaatacgaaaattaaacaaagacaaaagaagaatatggaacttgtgacacatgaagttcaaaaacaatataacatgac 
gatgaatgaatccaTTAACCTTTACAATGACTTAGCGGGGAGCCGCATAGACAGTCGTTGCCGGCAAACACACTTTCTGGAAACTTTGTCACCGGAAGTT 
TCCCACAAAGATGGTTTTGACTCAAGTTAAGTGTCTTTAATCCGGCCACCCTCGCCGGCACTTTCCCGAACACTAAGTTCCTTGATAGATCAAGCGTCTC 
GAGCGTCGTCGAGAAACTTAGCTTCCTCAAATCGAATCGGAGTTTGTTCCCCGACATTCGAAACTCCCGTAGTTGCTCTGCTCCCTTCAAGAACCTCAGT 
GGACTCCCTGAGATCTCGTTGTCCGAAAGATCAATGGAAACGTAGAGATCAGTTTGCCTTGTTTTCCAATCGTCTAAGCTCATCTTGATTCCACATTTAG 
CCAACTTCAAAGAGCCGAGGATCGACGCTGAGGTCACCCATTCCGGGATTGTTTCCATGTGAAACTTGTTGTACGACAGATCTAGAGTCAAGATGTAATT 
CTTCACGTTCAAAACAGGGAATGGATTGGTTAGAAGATTGTGAGAGAGATTGATATTAGCAATTTTAGTCAGCTTGGCCAAACTCTTCGGCACGGCTCCA 
GAGAAACGGTTCTTGGAGAGATCCAGTGTGTCGAGCGCCACGAATCTTGATAAATAGCTCGGTATCGACCCCGAGAGATTGTTCTGACCTAGCTCAAGGA 
ACGCAAGAACCGGCGCGAGCGATGCAATCGACGGAGGGAGCTTCCCGGAGAATCTGTTGCGTGAGAGAGTGAGGATTCGAAGGTTAGTCATTGATTTGAA 
AATATCCGGGATGGTTCCAGAGAGACGGTTTCCATCGAGATTAAGATTCGAAATGAGCTTGAGATTAGCAATCCCTAACGGTATTGTTCCGGTTAAGAGA 
TTACCGCCAAGATTTAGGTAGTTTAACCGAGTTAAATTGGATATGGAACTCGGGATTGAACCGATGAACCGGTTTCCTTTAACGGTTAATGTATCTAAGC 
GGTTAAGCGCGCCGATGTTGGCTGGAAGAGGACCAGAGAGACGTGTATTCTCGAGGTAAACATACTTTAGATGTGGTAATCTGAATAAAAATGGTGGAAA 
TGGTCCTGTGATGTTTTTGAGATTGATAAAGACGACCCCTTCCAAATGCTGGAGTTTGGCCAGTGACGGAGAGATTGTGCCAGAGAGAAAGATTCCGGCA 
TCGTCGGACTCTATGCGGATAGTGAGTACGACGACACGGTTGCCGTTAGGGCAACTGACACCGTTCCAAGAGCAGCAATCAGTACCTTTTTTCCAAGTGC 
TTAGAATACCTGAAGGATCTTTGGTTATACCCGATTTAAAAGCTAATAGACCCGCCTCATCATCAGGATGACACGTGGCTGCTGCGGTGGGGTTTAAACA 
CCGGAGAAAGATCACGGCGGTGAAAATGAAGAAGTTGTGGAAAGAACAAGAGTTCATggtagtgaattttattttttgtagtgaggttgagagaagcaat 
tagcaaactgatagctaattagtctaaagagagattagactcgacaccaattaatatcaaatagtcaaagttgacccatttggaccaatccatttgcgcg 
taacgattaatacagtgtaaagataattaaataacagtataaaacgtgacaaaaataaaaactatatagcataataactaccaattatcttttgtcaaaa 
ggttgttttgacaaaaagggtcttttgacattatttaagattatttagtattttataggagggatgtttaatattgaccgttataggttataaactctgt 
agaaaaaagtattcttagtagtgactttttggtaagataatccttttaaatggtactaatataatgggacaacatttggcatgtgggaaaagaaatatac 
aaatgaatgctaaaaggtaccgctagagcctagaagttcaatatacaaatgaaagaatatcaataaaagaaaccgaggataaagcaaaagagaaaggaga 
gatgaatattaaaacgctaattcatgatgtagaatgtagatgatggcaatgttctcaccaagattgtctgccttaaagtcggaaaaaggtagattcgacg 
taaacccatattttgataaaggtttataagaccaatatgccatagatttaaaaatgattcgggatatataaaaatgcagagaatatgtgtaatctatttg 
ctgagattttcaagataaattgctccggattgtagttcatttgatagaaaatgaggacaatggtttctagacaagaacgtacactattagaacttacaca 
aagcaataaaaagaagaagaagcaaacttagtttcaccaaaccataaatatagacaaaatacaacaaacatatttcataatgttttctccagctaagtag 
gagacacaatggaaaagcacactaagaccacggggtttcctacattattgcaaaccgaacaacgctcatcacacgacatagttcaaTCAATGTTTAGAAG 
GATCAAGAACTTGACCAATGAACAAAATTACTCCACTATTGTCTTCTCTCACAGTGAACAGAAATGGATGGTCAGCTACAAAATCCGGGTTCCGCATCAA 
ACATTGGGGCATCATGATGGCAACAGAGACCGCTGCAGCTTCGGTTCCCTCTTCATCCACCTCAATGCAAGCTTTATGAATAATGCTTGAGACGTGCAGT 



TTATCACCGTTCGAAGGCGAATCAACCATCTCAGTTAAATTACCTTTGGAAGTAAATGGAGAAGTAAGCCCCATGTCTTTCAAAACTTCTGAAGCTTTAA 
ACTCAAAAGAGAAGTTCAACTTCGGAATTCTCAAAGCATCGACTGGTGTACGGTGAAGTGGAATATGGCTATCAAGAAATCCTGGTTCAGTGCTTATTTT 
CTCAAGCAGAGCAGCTAGTCCGTCTTTGTCATTAGGAAGATAAATGTACATGGAGAAATGACGTTTATCCTCTACATAAGGTAGGCGCAAAACTTGGAAA 
CCATCATAGCCTCTTAGATATTGGTCCTTATAACTCATCATGAAGGGGACTTTTACCGTGTTACCGTCAAGAAGATGAAAATCGTTATCTTTTGTTAGTT 
TTGCATCAAATTTTCTACTCCATGCTGCTTTGAAGTACACTGCATTTGCTAGAATAAGTGTGCTATTACGGATCTCCTTGATAGTATCGGTACAATCGCG 
TGAAAGAATCTGCTTGATGAGTCCATTTGTGTGGACGTCAGCCCATATATTTACCTCATCAATCACTTCAACAGGcttcatgaccaagcgataaaaattg 
accaatcattagtgaagttggatgtcatatatacacaagaaattgaagaaataaaaaaagagaatgtgatatagccgtctccttcgtaaccacattaaac 
gtcttaaataacacgaacattcacctttatatatctatgttatagggattagtctaagtttcggtcccataataattgaagcaaaatttatccctaacga 
aaaaagttacCTTGGTTGCGAAGTCAACTTGACTACAAGAAGCCTTGTAGGAATTCTCCAAAAGCTCTTTAAAGGAAGGCTTCAAATAAGAAGACTTGTC 
GATCCAGACACCGTGAGCCGTAGATAAGCACAAATCACTTCTCTCGGTGCCGCCGTCCGCGATCTTGGCCAAGACCGCGTTAAGGTGATCCGTAGACGGT 
GACATGAGGAATGAGAGGATTTCTTCTTTGGTGACGGGATTAGAACCAGCGGCGATGAGGCTGAGCAAAACGTTGATTGACATCGGTGAAAAGACAACAT 
TGGAGCCATTGGCGACATCTGTTTCAATGACTTTCTTTGCTAGTCTTGCCACGACGTTGTTTTGGTTCTCAATTGATTTTCCTAACTCCATttttttcca 
agaagaggtgtacgggaagatataagaatggttctgaatatgcagatgtgatgattgatgaaatagcttgtttcaagtatactagtagctattttttgtt 
ttaaatatattttctgcacatgaattattcaatcgaaatgatttagaagtaataaagtaccgcgtgtggaaaagtcgtatcatggacttcgttggaagta 
cttggcattaactataaactaggtcttgaagtttggttaatttatgccttatgggtcaatttacttggaacaactctctttttcatccttttacccataa 
ggcatatgcataaaccaattgttccaaatcgattttataactctgggagttgccatttggaacaactctctttttcatcattttatatctcaatctagga 
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